首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56650篇
  免费   5675篇
  国内免费   5309篇
电工技术   2648篇
综合类   3591篇
化学工业   5694篇
金属工艺   25769篇
机械仪表   3013篇
建筑科学   926篇
矿业工程   1397篇
能源动力   1252篇
轻工业   612篇
水利工程   327篇
石油天然气   805篇
武器工业   748篇
无线电   1786篇
一般工业技术   9861篇
冶金工业   5960篇
原子能技术   425篇
自动化技术   2820篇
  2024年   138篇
  2023年   906篇
  2022年   1615篇
  2021年   1905篇
  2020年   1996篇
  2019年   1628篇
  2018年   1638篇
  2017年   2046篇
  2016年   1882篇
  2015年   2050篇
  2014年   2922篇
  2013年   2967篇
  2012年   3526篇
  2011年   4369篇
  2010年   3186篇
  2009年   3449篇
  2008年   2886篇
  2007年   4015篇
  2006年   3935篇
  2005年   3175篇
  2004年   2785篇
  2003年   2292篇
  2002年   1904篇
  2001年   1714篇
  2000年   1424篇
  1999年   1277篇
  1998年   963篇
  1997年   898篇
  1996年   864篇
  1995年   664篇
  1994年   588篇
  1993年   430篇
  1992年   381篇
  1991年   289篇
  1990年   252篇
  1989年   222篇
  1988年   129篇
  1987年   68篇
  1986年   42篇
  1985年   21篇
  1984年   35篇
  1983年   30篇
  1982年   40篇
  1981年   25篇
  1980年   16篇
  1979年   5篇
  1978年   11篇
  1976年   7篇
  1959年   4篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
Mg-based hydride is a promising hydrogen storage material, but its capacity is hindered by the kinetic properties. In this study, Mg–Mg2Ni–LaHx nanocomposite is formed from the H-induced decomposition of Mg98Ni1·67La0.33 alloy. The hydrogen capacity of 7.19 wt % is reached at 325 °C under 3 MPa H2, attributed to the ultrahigh hydrogenation capacity in Stage I. The hydrogen capacity of 5.59 wt % is achieved at 175 °C under 1 MPa H2. The apparent activation energies for hydrogen absorption and desorption are calculated as 57.99 and 107.26 kJ/mol, which are owing to the modified microstructure with LaHx and Mg2Ni nanophases embedding in eutectic, and tubular nanostructure adjacent to eutectic. The LaH2.49 nanophase can catalyze H2 molecules to dissociate and H atoms to permeate due to its stronger affinity with H atoms. The interfaces of these nanophases provide preferential nucleation sites and alleviate the “blocking effect” together with tubular nanostructure by providing H atoms diffusion paths after the impingement of MgH2 colonies. Therefore, the superior hydrogenation properties are achieved because of the rapid absorption process of Stage I. The efficient synthesis of nano-catalysts and corresponding mechanisms for improving hydrogen storage properties have important reference to related researches.  相似文献   
22.
Ni–Co/Mg(Al)O alloy catalysts with different Co/Ni molar ratios have been prepared from Ni- and Co-substituted Mg–Al hydrotalcite-like compounds (HTlcs) as precursors and tested for dry reforming of methane. The XRD characterization shows that Ni–Co–Mg–Al HTlcs are decomposed by calcination into Mg(Ni,Co,Al)O solid solution, and by reduction finely dispersed alloy particles are formed. H2-TPR indicates a strong interaction between nickel/cobalt oxides and magnesia, and the presence of cobalt in Mg(Ni,Co,Al)O enhances the metal-support interaction. STEM-EDX analysis reveals that nickel and cobalt cations are homogeneously distributed in the HTlcs precursor and in the derived solid solution, and by reduction the resulting Ni–Co alloy particles are composition-uniform. The Ni–Co/Mg(Al)O alloy catalysts exhibit relatively high activity and stability at severe conditions, i.e., a medium temperature of 600 °C and a high space velocity of 120000 mL g?1 h?1. In comparison to monometallic Ni catalyst, Ni–Co alloying effectively inhibits methane decomposition and coke deposition, leading to a marked enhancement of catalytic stability. From CO2-TPD and TPSR, it is suggested that alloying Ni with Co favors the CO2 adsorption/activation and promotes the elimination of carbon species, thus improving the coke resistance. Furthermore, a high and stable activity with low coking is demonstrated at 750 °C. The hydrotalcite-derived Ni–Co/Mg(Al)O catalysts show better catalytic performance than many of the reported Ni–Co catalysts, which can be attributed to the formation of Ni–Co alloy with uniform composition, proper size, and strong metal-support interaction as well as the presence of basic Mg(Al)O as support.  相似文献   
23.
《Ceramics International》2022,48(14):20158-20167
Vacuum induction melting is a potential process for the preparation of TiAl alloys with good homogeneity and low cost. But the crucial problem is a selection of high stability refractory. In this study, a BaZrO3/Y2O3 dual-phase refractory was prepared and its performance for melting TiAl alloys was studied and compared with that of a Y2O3 refractory. The results showed the dual-phase refractory consisted of BaZr1-xYxO3-δ and Y2O3(ZrO2), exhibited a thinner interaction layer (30 μm) than the Y2O3 refractory (90 μm) after melting the TiAl alloy. Although the TiAl alloys melted in the dual-phase and Y2O3 refractory exhibited similar oxygen contamination (<0.1 wt%), the alloy melted in the dual-phase refractory had smaller Y2O3 inclusion content and size than that in the Y2O3 refractory, indicating that the dual-phase refractory exhibited a better melting performance than the Y2O3 refractory. This study provides insights into the process of designing highly stable refractory for melting TiAl alloys.  相似文献   
24.
The recent introduction of the Asian yellow-legged hornet, Vespa velutina, into Europe has raised concern regarding the threat to honeybees and the competition with the European hornet, Vespa crabro. The aim of this study was to investigated essential (Mg, Fe, Zn, Cu) and non-essential (Cd and Pb) elements in these two species. Element concentrations were determined in the whole body and separately in the head, thorax and abdomen using atomic absorption spectrometry (AAS). The changes in essential element concentration and speciation during metamorphosis were also studied using size exclusion chromatography followed by AAS and proteomic analysis. In both species, the essential elements were more concentrated in the abdomen due to the presence of fat bodies. Magnesium, Fe and Zn concentrations were significantly higher in V. crabro than in V. velutina and could have been related to the higher aerobic energy demand of the former species required to sustain foraging flight. Low concentrations of Cd and Pb were indicative of low environmental exposure. The concentration and speciation of essential elements, particularly Fe, varied among the developmental stages, indicating a modification of ligand preferences during metamorphosis. Overall, the results in the present study provide a better understanding of the hornet metal metabolism and a foundation for additional studies.  相似文献   
25.
In recent years,iron(Fe)based degradable metal is explored as an alternative to permanent fracture fixation devices.In the present work,copper(Cu)is added in Fe-Mn system to enhance the degradation rate and antimicrobial properties.Fe-Mn-xCu(x=0.9,5 and 10 wt.%)alloys are prepared by the melting-casting-forging route.XRD analysis confirms austenite phase stabilization due to the presence of Mn and Cu.As predicted by Thermo-Calc calculations,Cu rich phase precipitations are noticed along the austen-ite grain boundaries.Degradation behaviours of Cu added Fe-Mn alloys are investigated through static immersion and electrochemical polarization where enhanced degradation is found for higher Cu added alloys.When challenged against E.Coli bacteria,the Fe-Mn-Cu alloy media extract shows a significant bac-tericidal effect compare to the base alloy.In vitro cytocompatibility studies,as determined using MG63 and MC3T3-E1 cell lines,indicate increased cell density as a function of time for all the alloys.When implanted in rabbit femur,the newly developed alloy does not show any kind of tissue necrosis around the implants.Better osteogenesis and higher new bone formation are observed with Fe-Mn-10Cu alloy as evident from micro-computed tomography(μ-CT)and fluorochrome labelling.  相似文献   
26.
A new reverse build-up method is developed to fabricate an economical H2-permeable composite membrane. Sputtering and electroplating are used for the formation of a membrane comprised of a 3.7-μm-thick Pd60Cu40 (wt.%) alloy layer and a 13-μm-thick porous Ni support layer, respectively. The H2-permeation measurements are performed under the flow of a gaseous mixture of H2 and He at 300–320 °C and 50–100 kPa of H2 partial pressure. The H2/He selectivity values exceed 300. The activation energy at 300–320 °C is 10.9 kJ mol−1. The H2 permeability of the membrane is 1.25 × 10−8 mol m−1 s−1 Pa−0.5 at 320 °C after 448 h. The estimated Pd cost of the proposed membrane is approximately 1/8 of the cost for a pure Pd60Cu40 membrane. This study demonstrates that the proposed method allows the facile production of low-cost, Pd-based membranes for H2 separation.  相似文献   
27.
Xilei Dai  Junjie Liu  Yongle Li 《Indoor air》2021,31(4):1228-1237
Due to the severe outdoor PM2.5 pollution in China, many people have installed air-cleaning systems in homes. To make the systems run automatically and intelligently, we developed a recurrent neural network (RNN) that uses historical data to predict the future indoor PM2.5 concentration. The RNN architecture includes an autoencoder and a recurrent part. We used data measured in an apartment over the course of an entire year to train and test the RNN. The data include indoor/outdoor PM2.5 concentration, environmental parameters and time of day. By comparing three different input strategies, we found that a strategy employing historical PM2.5 and time of day as inputs performed best. With this strategy, the model can be applied to predict the relatively stable trend of indoor PM2.5 concentration in advance. When the input length is 2 h and the prediction horizon is 30 min, the median prediction error is 8.3 µg/m3 for the whole test set. For times with indoor PM2.5 concentrations between (20,50] µg/m3 and (50,100] µg/m3, the median prediction error is 8.3 and 9.2 µg/m3, respectively. The low prediction error between the ground-truth and predicted values shows that the RNN can predict indoor PM2.5 concentrations with satisfactory performance.  相似文献   
28.
Titanium alloys possess excellent corrosion resistance in marine environments,thus the possibility of their corrosion caused by marine microorganisms is neglected.In this work,microbiologically influenced corrosion (MIC) of TC4 titanium alloy caused by marine Pseudomonas aeruginosa was investigated through electrochemical and surface characterizations during a 14-day immersion test.Results revealed that the unstable surface caused by P.aeruginosa resulted in exposure of Ti2O3 and severe pitting corrosion with maximum pit depth of 5.7 μm after 14 days of incubation.Phenazine-1-carboxy[ate (PCN),secreted by P.aeruginosa,promoted extracellular electron transfer (EET) and accelerated corrosion.Deletion of the phzH gene,which codes for the enzyme that catalyzes PCN production,from the P.aeruginosa genome,resulted in significantly decreased rates of corrosion.These results demonstrate that TC4 titanium alloy is not immune to marine MIC,and EET contributes to the corrosion of TC4 titanium alloy caused by P.aeruginosa.  相似文献   
29.
Due to its excellent bone-like mechanical properties and non-toxicity, magnesium (Mg) and its alloys have attracted great interest as biomaterials for orthopaedic applications. However, their fast degradation rate in physiological environments leads to an acute inflammatory response, restricting their use as biodegradable metallic implants. Endowing Mg-based biomaterials with immunomodulatory properties can help trigger a desired immune response capable of supporting a favorable healing process. In this study, electrospun poly(ε-caprolactone) (PCL) fibers loaded with coumarin (CM) and/or zinc oxide nanoparticles (ZnO) were used to coat the commercial AZ31 Mg alloy as single and combined formulas, and their effects on the macrophage inflammatory response and osteoclastogenic process were investigated by indirect contact studies. Likewise, the capacity of the analyzed samples to generate reactive oxygen species (ROS) has been investigated. The data obtained by attenuated total reflection Fourier-transform infrared (FTIR-ATR) and X-ray photoelectron spectroscopy (XPS) analyses indicate that AZ31 alloy was perfectly coated with the PCL fibers loaded with CM and ZnO, which had an important influence on tuning the release of the active ingredient. Furthermore, in terms of degradation in phosphate-buffered saline (PBS) solution, the PCL-ZnO- and secondary PCL-CM-ZnO-coated samples exhibited the best corrosion behaviour. The in vitro results showed the PCL-CM-ZnO and, to a lower extent, PCL-ZnO coated sample exhibited the best behaviour in terms of inflammatory response and receptor activator of nuclear factor kappa-B ligand (RANKL)-mediated differentiation of RAW 264.7 macrophages into osteoclasts. Altogether, the results obtained suggest that the coating of Mg alloys with fibrous PCL containing CM and/or ZnO can constitute a feasible strategy for biomedical applications.  相似文献   
30.
The Fe−Ni−TiO2 nanocomposite coatings were electrodeposited by pulse frequency variation. The results showed that the nanocomposite with a very dense coating surface and a nanocrystalline structure was produced at higher frequencies. By increasing the pulse frequency from 10 to 500 Hz, the iron and TiO2 nanoparticles contentswere increased in expense of nickel content. XRD patterns showed that by increasing the frequency to 500 Hz, an enhancement ofBCC phase was observed and the grain size of deposits was reduced to 35 nm. The microhardness and the surface roughness were increased to 647 HV and 125 nm at 500 Hz due to the grain size reduction and higher incorporation of TiO2 nanoparticles into the Fe−Ni matrix (5.13 wt.%). Moreover, the friction coefficient and wear rate values were decreased by increasing the pulse frequency;while the saturation magnetization and coercivity values of the composite deposits were increased.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号